18th December 2012 Millennium Workshop, MPA, Garching

Synthetic Galaxy Catalogues From A Galaxy Formation Model

Alex Merson University College London

Carlton Baugh, John Helly, Violeta Gonzalez-Perez, Jo Woodward, Peder Norberg, Shaun Cole, Carlos Frenk

Outline

- Lightcone catalogues
 - the GALFORM model
 - construction process
- Applications
 - group-finding
 - future surveys e.g. EUCLID
 - colour selection

Why Build Mock Catalogues?

Mock catalogue: synthetic dataset emulating a real data sample

Broad range of applications...

PREDICTION

- Relate observational results to theoretical predictions
 → put theory into "observational framework"
- Predictive power -- higher redshift predictions compared to empirical methods (e.g. Halo Occupation Distributions)

CALIBRATION

- Calibrate (statistical) estimators
 → already know "correct"
 answer, e.g.
 - group-finding algorithms
 - photo-z estimators
 - error estimation
- Assessment/removal of systematics
- Synthetic training sets

Lightcone Galaxy Catalogues

- Galaxies positioned according to epoch at which cross past lightcone of observer
- Incorporate galaxy evolution with redshift
- Construction: halo merger trees from N-body simulation (Millennium Simulation, Springel et al. 2005) and semi-analytic model of galaxy formation (GALFORM, Cole et al. 2000)
- Advantages of using semi-analytic models:
 - model star-formation history to high redshift
 - low computational cost (c.f. hydrodynamical simulations)
 - multi-wavelength predictions (X-ray, UV, optical, IR, radio)

Multi-wavelength Predictions

Far-UV

Lacey et al. (2010)

Lightcone Construction

- Run GALFORM on Nbody snapshots of cosmological simulation (Millennium Simulation)
- Place observer
- Generate cosmological volume (replicate box)
- Determine when each galaxy enters past
 lightcone of observer
 -- interpolate galaxy
 positions and velocities.

Lightcone Construction

Mock Images

Daniel Farrow (Durham)

PanSTARRS gri image

Tuesday, 18 December 12

Group Finder Calibration

- Mocks used to calibrate group-finding algorithms for galaxy surveys e.g. 2dFGRS (Eke et al. 2004)
- Properties of mock groups already known -- adjust group finding parameters until mock groups recovered

Durham Lightcones

- PanSTARRS-I (Murphy et al. 2011)
- GAMA (Robotham et al. 2011)
- 6dFGS (Merson et al., in prep.)
- Dark Energy Survey (Santos et al., in prep.)

Future Galaxy Surveys: EUCLID

➡ pipeline calibration, legacy science, ...

Lightcones For Photometric Surveys

Galaxy Colour Selections

BzK selection (Daddi et al. 2004)
select star-forming & passive galaxies at 1.4 < z < 2.5

Completeness & Contamination

BzK Number Counts

- Good agreement in counts of BzK and sBzK galaxies
- Poorer agreement in pBzK counts unable to match turnover
- Possibly due to insufficient B-band depth:
- Assign B-band magnitude equal to detection limit
 - (B-z) colour too blue
 - Confuse passive and star-forming galaxies

Durham Lightcones

- Lightcones currently available:
 - Galaxy And Mass Assembly (r, K-band selection)
 - Herschel ATLAS (60, 100, 160, 250 500µm selection)
 - PanSTARRS PSI (grizy selection)
 - WALLABY, TAIPAN (HI selection)
 - EUCLID (H α , H-band selection)
 - Dark Energy Survey (grizy selection)
 - ALHAMBRA (various narrow band selection)
- Formats: ASCII, HDF5, (FITS)
- Simulations: Millennium, Millennium 2, MillGas, (Millennium XXL)
- Post-processing: images, (lensing, spectra, photometric redshifts) ...
- Can also produce interpolated snapshots
- Distribution: gzipped tar files, (SQL database)

Extra Material

Need For Interpolation

- Between z = 1.91 and z = 2.07 have ~ 20% change in amplitude of $\xi(r)$
- At intermediate redshift z ~ 2, with NO INTERPOLATION have ~ 10% uncertainty on $\xi(r)$