MW disc stars

Local ellipticals

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト つんぐ

Detailed chemical evolution in the Munich semi-analytic model

Rob Yates with Bruno Henriques and Peter Thomas

MPA

18th December 2012

MW disc stars

Local ellipticals

Conclusions

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

• Our GCE set-up

- Supernova yields and rates
- Storing star formation histories
- SN-Ia DTDs

• Comparison with Milky Way disc stars

 $\bullet~[{\rm Fe}/{\rm H}]$ and [O/Fe] distributions

• Comparison with local ellipticals

• The M_* -[O/Fe] relation

Dependence on SFH resolution

MW disc stars

Local ellipticals

Conclusions

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → Ѻ < ♡

The GCE equation

$$e_{\mathsf{Z}}(t) = \int_{\mathcal{M}_{L}}^{\mathcal{M}_{U}} \mathcal{M}_{\mathsf{Z}}(\mathcal{M}, Z_{0}) \ \psi(t - \tau_{\mathsf{M}}) \ \phi(\mathcal{M}) \ \mathsf{d}\mathsf{M}$$

MW disc stars

Local ellipticals

Conclusions

Chabrier IMF

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The GCE model •O	MW disc stars	Local ellipticals	Conclusions
Yield tables			

$$e_{\mathsf{Z}}(t) = \int_{M_L}^{M_U} M_{\mathsf{Z}}(M, Z_0) \ \psi(t - \tau_{\mathsf{M}}) \ \phi(M) \ \mathsf{d}\mathsf{M}$$

We track: H, He, C, N, O, Ne, Mg, Si, S, Ca & Fe

Table type	Reference	Masses (M_{\odot})	Metallicities (M_Z/M)
Stellar lifetimes	Portinari et al. (1998)	$30 [0.6 \le M \le 120.0]$	$6 [0.0004 \leq Z \leq 1.0]$
AGB winds	Marigo (2001)	$21 [0.85 \leq M \leq 5]$	$3 [0.004 \leq Z \leq 0.019]$
SNe-Ia	Thielemann et al. (2003)	-	-
SNe-II	Portinari et al. (1998)	$15 [6 \leq M \leq 120]$	$5 [0.0004 \leq Z \leq 0.05]$
SNe-II	Chieffi & Limongi (2001)	$15 [13 \leqslant M \leqslant 35]$	$6 [0.0 \leq Z \leq 0.02]$

The GCE model	MW disc stars	Local ellipticals
●○	00000	00000
SFH bins		

 $e_{\mathsf{Z}}(t) = \int_{M_L}^{M_U} M_{\mathsf{Z}}(M, Z_0) \ \psi(t - \tau_{\mathsf{M}}) \ \phi(M) \ \mathsf{d}\mathsf{M}$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

MW disc stars

Local ellipticals

・ロト ・聞ト ・ヨト ・ヨト

æ

990

Conclusions

Supernova la rates

MW disc stars

Local ellipticals

Conclusions

Fiducial GCE parameters

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

MW disc stars

Local ellipticals

Conclusions

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Composition of MW disc G-dwarfs

MW-type galaxy sample (z = 0)

- $11.5 \leq \log(M_{\rm DM \ halo}) \leq 12.5$
- Type 0 (central) galaxy
- $M_{
 m bulge}/M_{*} < 0.5$
- $1.0 \leq {\sf SFR}[M_{\odot}/{\sf yr}] \leq 10.0$, in the last ~ 3.5 Gyrs

MW disc stars

Local ellipticals

Conclusions

Observations

・ロット (四)・ (田)・ (田)・ (日)

MW disc stars

Local ellipticals

Conclusions

Comparison

MW disc stars

Local ellipticals

Conclusions

Model MW disc tracks

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへぐ

 The GCE model
 MW disc stars
 Local ellipticals

 00
 00
 00
 00000

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

► =

MW disc stars

Local ellipticals

・ロト ・ 聞 ト ・ 注 ト ・ 注 ト

æ

500

Conclusions

Results for different SN-Ia DTDs

MW disc stars

Local ellipticals

Conclusions

<□▶ <□▶ < □▶ < □▶ < □▶ = □ の < ⊙

Local elliptical galaxies

Elliptical galaxy sample (z = 0)

•
$$M_{\rm bulge}/M_{*} > 0.7$$

The GCE model MW disc stars occord mass- $[\alpha/Fe]$ relations

Local ellipticals

Conclusions

◆ロト ◆昼 ト ◆臣 ト ◆臣 - の々で

MW disc stars

Local ellipticals

Conclusions

Model mass-[O/Fe] relation

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ① ● ● ● ●

MW disc stars

Local ellipticals

Conclusions

Mass-Age relation

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

MW disc stars

Local ellipticals

Conclusions

Model mass-[O/Fe] relation

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ① ● ● ● ●

Model mass-[O/Fe] relation (full resolution)

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ① ● ● ● ●

Model mass-[O/Fe] relations (other set-ups)

3.1

500

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Summary

- We have implemented **delayed enrichment** into the Munich semi-analytic model
- We can reproduce the chemical composition of **MW-type** galaxy discs
- We can reproduce **positive slopes** in the M_* - $[\alpha/Fe]$ relations of local ellipticals, except for O and Mg ...
- We find a **bi-modal DTD** and SN-II yields that account for **prior stellar mass loss** give the best results
- Further SFH resolution tests required...