

<u>The Millennium Run Observatory</u> **Roderik Overzier (UT Austin) + Gerard Lemson + Galformod Part I: Concept and First Results** Part II: How-to, Data, and new User Services

• Motivation: *more direct and less biased interaction* between theory predictions and the observations...

• Method: create a *legacy facility* producing *telescope-quality data* from simulations for analysis using standard observing techniques

• Goal: better *understand observations* & produce *better models*

see Overzier, Lemson, Angulo, Bertin, Blaizot, Henriques, Marleau, White 2013, MNRAS, 428, 778

The Millennium Run Observatory a Theory-observational interface

How to link simulations (theorists) and observations (observers)?

- What information from simulations is most useful, and in what form?

Currently two approaches **I. Predict observables from simulations** - typically too idealized, how to compare with real data?

2. Derive physical quantities from observations

- observational astrophysics is hard!

Our approach

Link the two approaches using a Virtual Theoretical Observatory (easier to add "noise" to simulations than to take it out of data)

Simulations

N-body or LT Dark Matter (M_{halo},pos,vel) **Comparison Method**

Observations

Simulations

N-body or LT Dark Matter (M_{halo},pos,vel)

Comparison Method

number counts/clustering

Detected Objects ("Galaxies") (mags, colors, sizes, (z))

Observations

SAM/Hydro (M_{stars},SFR,size,...)

Comparison Method

number counts/clustering

Detected Objects ("Galaxies") (mags, colors, sizes, (z))

Observations

Simulations

N-body or LT Dark Matter (M_{halo},pos,vel)

SAM/Hydro (M_{stars},SFR,size,...)

SAM+synthesis modeling (rest-frame mags, colors)

Mock/Lightcone (obs-frame mags, colors)

Simulated (Noisy) Image (mags, colors, sizes)

Comparison Method

number counts/clustering

SED fitting of Data

SEDs applied to Simulation, selection function affects data

Realistic comparison but still idealized!

This Talk "True Comparison"

Observations

More assumptions

Fewer assumptions

The Millennium Run Observatory in a nutshell

Simulating the Hubble Ultra Deep Field

Full SAM prediction, NO artist's impression

- positions
- disks & bulges
- sizes
- inclination & position angle
- magnitudes w/ dust

Flexible

- Multi-Wavelength
- Multi-Cosmology
- Multi-SAM
- Multi-SSP
- ▶ Multi-IGM
- Multi-Telescope

Simulating the Hubble Ultra Deep Field

Full SAM prediction, NO artist's impression

- positions
- disks & bulges
- sizes
- inclination & position angle
- magnitudes w/ dust

Flexible

- Multi-Wavelength
- Multi-Cosmology
- Multi-SAM
- Multi-SSP
- ▶ Multi-IGM
- Multi-Telescope

Simulating the Hubble Ultra Deep Field

Full SAM prediction, NO artist's impression

- positions
- disks & bulges
- sizes
- inclination & position angle
- magnitudes w/ dust

Flexible

- Multi-Wavelength
- Multi-Cosmology
- Multi-SAM
- Multi-SSP
- Multi-IGM
- Multi-Telescope

-1:59:58.351 +0:0:2.328 (-0.00687 , 0.00065)

UDF Viz Image from STIFF

ERS 9-Filters Image w/ real noise

ERS 9-Filters Image w/ real noise

-1:59:58.964 -0:0:6.572 (-0.00432 , -0.00183)

ERS 9-Filters Image w/ real noise

HSC WIDE riz Image

-1:59:58.778 -0:3:55.948 (-0.00509 , -0.06554)

•

ERS 9-Filters Image w/ real noise

HSC WIDE riz Image

HSC DEEP riz Image

ERS 9-Filters Image w/ real noise

HSC WIDE riz Image

HSC DEEP riz Image

•

HSC ULTRADEEP riz Image

ERS 9-Filters Image w/ real noise

HSC WIDE riz Image

HSC DEEP riz Image

HSC ULTRADEEP riz Image

FHTLS-Wide gri Image from RGBVIEW

•

ERS 9-Filters Image w/ real noise

HSC WIDE riz Image

HSC DEEP riz Image

HSC ULTRADEEP riz Image

CFHTLS-Wide gri Image from RGBVIEW

CFHTLS-Deep gri Image

Lightcones aimed at a specific object at a specific redshift

locations of 3,000 clusters in the MR

a massive cluster selected at z=0, 'observed' in the lightcone at z=0.4:

z = 0.4 Massive cluster

MRObs Mock HST observation

Cluster Cl0024 at z~0.4

MRObs Mock SDSS observations of clusters

z = 0.02 z = 0.09 z = 0.21

z = I Massive cluster seen from 3 different directions

z = 2.1 Massive "Proto-cluster"

MRObs image simulations for the HST CANDELS survey

MRObs image simulations for the HST CANDELS survey

HST-WFC3/ Y₁₀₅J₁₂₅H₁₆₀

MRObs image simulations for the HST CANDELS survey

HST-WFC3/ Y₁₀₅J₁₂₅H₁₆₀

SAMs and Lightcones alone do not tell the whole story!

Source Extracting the Millennium Simulations...

perfect image

telescope image

Source Extractor objects

Viewing SAMs from the actual observer's perspective

MRObs allows more realistic sample selections

Based on lightcone:

Based on Source Catalogs built from MRObs images (based on the same lightcone):

High-z dropouts in the CANDELS/GOODS-S Simulation

From Lightcone (with J < 27.0 AB mag)

From MRObs Images

High-z dropouts in the MRObs CANDELS/GDS-S Simulation

Summary

MRObs image simulations bring an entirely new perspective to the semi-analytic modeling of galaxies

Important for, e.g.

- Realistic, accurate predictions
- Revealing the main flaws/limitations of the models
- Tests of data analysis methods
- Interpretation of data
- ...

Where to go from here?

• Extend to other models (e.g. GALFORM)

 Fully-integrated workflow combining cosmology, SAMs, lightcones, and MRObs images for maximal flexibility and parameter space studies constrained by observations

<u>The Millennium Run Observatory</u> **Roderik Overzier (UT Austin) + Gerard Lemson + Galformod** Part I: Concept and First Results **Part II: How-to, Data, and new User Services**

see Overzier, Lemson, Angulo, et al. 2013, MNRAS, 428, 778

Millennium Run Observatory Workflow

Millennium Run Observatory Workflow

IGM corrections

We need to correct intrinsic magnitudes of galaxies in lightcones due to absorption by Lyman Limit Systems, the optically thin component of the IGM, and the Lya Forest:

Rest Wavelength

IGM corrections for 3 models & 40 filters now available in the MRDB

mrobs_db.igm.madau

mrobs_db.igm.meiksin

mrobs_db.igm.inoueiwata

Example: Give the offsets in SDSS r'-band magnitudes for galaxies at $z \sim 5$ due to the IGM for the three different IGM models:

g3.	dss r as d	m r inqueiwata			
rom mrobs mrobs mrobs	db.igm.mad db.igm.mei db.igm.ino	au g1, ksin g2, ueiwata g3			
here gl.r	dshift > 5	and g2.redshift	= gl.redshift a	nd g3.redshift= g1	.redshift

\$

Maximum number of rows to return to the query form: 10

Output:

redshift	dm_r_madau	dm_r_meiksin	dm_r_inoueiwata
5.1	1.62615	1.42231	1.42235
5.2	1.76954	1.5497	1.54974
5.3	1.94041	1.71196	1.71199
5.4	2.17735	1.91627	1.91629
5.5	2.49564	2.19895	2.19897
5.6	2.85594	2.49572	2.49573
5.7	3.16415	2.76459	2.76461
5.8	3.49667	3.05191	3.05191
5.9	3.92382	3.41224	3.41224
6.0	4.3945	3.81938	3.81938

values can be refined using interpolations between redshifts, and applied "on-the-fly" when retrieving a lightcone from the DB (ask me or GL for the SQL)

Millennium Run Observatory Workflow

Galaxy Modeling Technique

$$\mu_{S}(R) = m - 2.5 \log_{10}(B/T) + 8.3268(R/R_{e})^{1/4} + 5 \log_{10}(R_{e}) - 4.9384$$
(1)
$$\mu_{D}(R) = m - 2.5 \log_{10}(1 - B/T) + 1.0857(R/R_{h}) + 5 \log_{10}(R_{h}) + 1.9955,$$
(2)
(1)
$$I_{D}[x', y'] \propto e^{-(C_{XX}x'^{2} + C_{YY}y'^{2} + C_{XY}y'x')^{1/2}} I_{S}[x', y'] \propto e^{-7.6693(C_{XX}x'^{2} + C_{YY}y'^{2} + C_{XY}y'x')^{1/8}},$$
(1)
$$C_{XX} = \frac{\cos^{2}(\theta)}{A^{2}} + \frac{\sin^{2}(\theta)}{B^{2}} C_{YY} = \frac{\sin^{2}(\theta)}{A^{2}} + \frac{\cos^{2}(\theta)}{B^{2}} C_{YY} = 2\cos(\theta)\sin(\theta) \left(\frac{1}{A^{2}} - \frac{1}{B^{2}}\right).$$

 $A = R_e$ for bulges $A = R_h$ for discs $B = A\cos(\phi)$

Minimal Requirements from the SAM+lightcone are

x _c , y _c	<	ra,dec from <i>lightcone</i> + image pixel scale + pointing
m	~	dust-attenuated filter magnitude from <i>lightcone</i> , corrected for IGM absorption (added to MRDB)
B/T	←	ratio of bulge-to-total filter flux
R _h , R _e	<	stellardiskradius/3D _A , bulgesize/D _A
θ	←	disk position angle from disk spin axis
cos(φ)	←	disk projected aspect ratio from disk spin axis

if you can provide these to us, we're in business

A "perfect" image of the sky

Interesting computer science aspects as well

Teaching

Teaching

- Theses
- Available Topics
 - GPU-based acceleration of the Millennium Run Observatory (MRObs)
 - A Network Streaming System for Terrain Rendering
 - Terrain Editing with Haptic Feedback
 - Parallel Rendering Framework for Virtual Reality Installations
 - Screen space curvature smoothing
 - Development of a multimodal volume-editing environment in the field of neuro-planning
 - Photorealistische Visualisierung bestimmter Oberflächentypen von Automobilen
 - Terrain Rendering on Android and OpenGL ES 2.0
 - Exploiting web services and OpenGL (WebGL/OpenGL ES) to render meteorological forecast data

▶ Teaching ▶ Theses ▶ Available Topics ▶ GPU-based acceleration of the Millennium Run Observatory (MRObs)

GPU-based acceleration of the Millennium Run Observatory (MRObs)

Quick Access

Technische Universität München

Winter Term 12/13
 Theses: Available Topics

пп

Publications

- ▶ Persons
- ▶ Job Offers

Overview

with Kai Bürger (TUM), Gerard Lemson, and unknown TUM student

Millennium Run Observatory Workflow

From "perfect" image to mock observation

$$F_{e-} = 10^{-0.4(m_{AB}+ZP)} \cdot T_{ ext{exp}} \cdot G / \sum_{i \in S} \sum_{j \in S} I[x_i',y_j'],$$

Current MRObs pipeline performs the following post-processing steps:

- Single or multiple exposures
- Site Sky Background
- PSF convolution
- Dark current
- Poissonian object and sky noise
- Normally distributed read-noise
- (Galactic Extinction)
- (Galactic Stars)
- Observed sensitivity variations

Example of complicated tiling and noise patterns in the HST CANDELS survey

Master table with mock telescope/instrument properties

telescope, camera, filter, wavelength, pixel_size, fov, gain, RON, DC, sky, zp,...

Example: cameras on-board the Hubble Space Telescope

hst,acs_hrc,acs330,3334,0.025,1024,1,155000,65535,4.7,0.0058,24.32,24.09 hst,acs_sbc,acs150,1619,0.025,1024,1,200000,20000,0.0,1.24E-05,31.5,22.45 hst,acs_wfc,acs435,4297,0.05,4096,1,84700,65535,4.2,0.0062,22.96,25.68 hst,acs_wfc,acs475,4760,0.05,4096,1,84700,65535,4.2,0.0062,22.20,26.49 hst,acs_wfc,acs606,6060,0.05,4096,1,84700,65535,4.2,0.0062,22.20,26.49 hst,acs_wfc,acs625,6318,0.05,4096,1,84700,65535,4.2,0.0062,22.09,25.91 hst,acs_wfc,acs775,7764,0.05,4096,1,84700,65535,4.2,0.0062,21.92,25.68 hst,acs_wfc,acs814,8333,0.05,4096,1,84700,65535,4.2,0.0062,21.92,25.68 hst,acs_wfc,acs814,8333,0.05,4096,1,84700,65535,4.2,0.0062,21.89,25.94 hst,acs_wfc,acs850,9445,0.05,4096,1,84700,65535,4.2,0.0062,21.85,24.86 hst,wfc3_ir,wfc105,10552,0.13,1024,2.5,93000,70000,21,0.022,21.78,25.26 hst,wfc3_ir,wfc140,13923,0.13,1024,2.5,93000,70000,21,0.022,21.78,25.26 hst,wfc3_ir,wfc160,15369,0.13,1024,2.5,93000,70000,21,0.022,21.78,25.47 hst,wfc3_ir,wfc160,15369,0.13,1024,2.5,93000,70000,21,0.022,21.80,24.97

Example: the SDSS

sdss,sdss,sdss_u,3551,0.396,9000,1.47,62500,62500,3.7,0.0,22.42,23.3559 sdss,sdss,sdss_g,4686,0.396,9000,4.05,62500,62500,2.1,0.0,21.98,24.1419 sdss,sdss,sdss_r,6165,0.396,9000,4.73,62500,62500,2.0,0.0,21.02,23.9169 sdss,sdss,sdss_i,7481,0.396,9000,4.64,62500,62500,6.0,0.0,20.10,23.5969 sdss,sdss,sdss_z,8931,0.396,9000,3.48,62500,62500,2.5,0.0,18.88,22.3149

Master table with mock telescope/instrument properties

telescope, camera, filter, wavelength, pixel_size, fov, gain, RON, DC, sky, zp,...

Example: cameras on-board the Hubble Space Telescope

hst,acs_hrc,acs330,3334,0.025,1024,1,155000,65535,4.7,0.0058,24.32,24.09 hst,acs_sbc,acs150,1619,0.025,1024,1,200000,20000,0.0,1.24E-05,31.5,22.45 hst,acs_wfc,acs435,4297,0.05,4096,1,84700,65535,4.2,0.0062,22.96,25.68 hst,acs_wfc,acs475,4760,0.05,4096,1,84700,65535,4.2,0.0062,22.20,26.49 hst,acs_wfc,acs606,6060,0.05,4096,1,84700,65535,4.2,0.0062,22.20,26.49 hst,acs_wfc,acs625,6318,0.05,4096,1,84700,65535,4.2,0.0062,22.09,25.91 hst,acs_wfc,acs775,7764,0.05,4096,1,84700,65535,4.2,0.0062,21.92,25.68 hst,acs_wfc,acs814,8333,0.05,4096,1,84700,65535,4.2,0.0062,21.92,25.68 hst,acs_wfc,acs814,8333,0.05,4096,1,84700,65535,4.2,0.0062,21.89,25.94 hst,acs_wfc,acs850,9445,0.05,4096,1,84700,65535,4.2,0.0062,21.85,24.86 hst,wfc3_ir,wfc105,10552,0.13,1024,2.5,93000,70000,21,0.022,21.80,25.28 hst,wfc3_ir,wfc125,12486,0.13,1024,2.5,93000,70000,21,0.022,21.78,25.26 hst,wfc3_ir,wfc140,13923,0.13,1024,2.5,93000,70000,21,0.022,21.78,25.47 hst,wfc3_ir,wfc160,15369,0.13,1024,2.5,93000,70000,21,0.022,21.80,24.97

Example: the SDSS (filter names correspond to columns in Henriques2012a lightcones)

sdss,sdss,sdss_u,3551,0.396,9000,1.47,62500,62500,3.7,0.0,22.42,23.3559
sdss,sdss,sdss,sdss_g,4686,0.396,9000,4.05,62500,62500,2.1,0.0,21.98,24.1419
sdss,sdss,sdss,sdss_r,6165,0.396,9000,4.73,62500,62500,2.0,0.0,21.02,23.9169
sdss,sdss,sdss,sdss_i,7481,0.396,9000,4.64,62500,62500,6.0,0.0,20.10,23.5969
sdss,sdss,sdss,sdss,sdss_z,8931,0.396,9000,3.48,62500,62500,2.5,0.0,18.88,22.3149

Parameters that further define the mock survey

telescope, camera, filter, Nexp, Texp, PSF file

Example: the Hubble Ultra Deep Field

hst,acs_wfc,acs435,112,134880,UDF/acs/0.03/udf_psf_f435w.fits hst,acs_wfc,acs606,112,135320,UDF/acs/0.03/udf_psf_f606w.fits hst,acs_wfc,acs775,288,347110,UDF/acs/0.03/udf_psf_f775w.fits hst,acs_wfc,acs850,288,346620,UDF/acs/0.03/udf_psf_f850lp.fits

Extensive library of 2D point spread function image kernels

Example: the HST/WFC3 J-band PSF

Parameters that further define the mock survey

telescope, camera, filter, Nexp, Texp, PSF file

Example: the Hubble Ultra Deep Field

hst,acs_wfc,acs435,112,134880,UDF/acs/0.03/udf_psf_f435w.fits hst,acs_wfc,acs606,112,135320,UDF/acs/0.03/udf_psf_f606w.fits hst,acs_wfc,acs775,288,347110,UDF/acs/0.03/udf_psf_f775w.fits hst,acs_wfc,acs850,288,346620,UDF/acs/0.03/udf_psf_f850lp.fits

(first three columns provide a unique match to the instruments table)

Extensive library of 2D point spread function image kernels

Example: the HST/WFC3 J-band PSF

From "perfect" image to mock observation

perfect image

telescope image

Millennium Run Observatory Workflow

Source Extracting the Millennium Simulations...

perfect image

telescope image

Source Extractor objects

Critical test: is the quality of the mock and real images the same?

The Millennium Run Observatory

MRObs - Imaging Portal

Surveys Overview Table

Show 25 🔹 entries				Search:	
Survey	Instrument/Filter	Stellar Population	IGM Model	Cosmology	Download 4
CANDELS/COSMOS	HST/ACS F606W HST/ACS F814W WFC3/IR F105W WFC3/IR F125W WFC3/IR F160W	BC03 M05	MADAU MEIKSIN INOUE-IWATA	WMAP1 WMAP7*	<u>v0.5</u>
CANDELS/UDS	HST/ACS F606W HST/ACS F814W WFC3/IR F105W WFC3/IR F125W WFC3/IR F160W	BC03 M05	MADAU MEIKSIN INOUE-IWATA	WMAP1 WMAP7*	<u>v0.5</u>
CFHT-LS Deep	Megacam u Megacam g Megacam r Megacam i Megacam z	BC03 M05	MADAU MEIKSIN INOUE-IWATA	WMAP1 WMAP7*	<u>v0.5</u>
CFHT-LS Wide	Megacam u Megacam g Megacam r Megacam i Megacam z	BC03 M05	MADAU MEIKSIN INOUE-IWATA	WMAP1 WMAP7*	<u>v0.5</u>
GOODS v2.0	HST/ACS F435W HST/ACS F625W HST/ACS F775W HST/ACS F850LP	BC03 M05	MADAU MEIKSIN INOUE-IWATA	WMAP1 WMAP7*	<u>v0.5</u>
	WFC3/UVIS F225W WFC3/UVIS F275W WFC3/UVIS F336W				

http://galformod.mpa-garching.mpg.de/mrobs/

Distribution of new kinds of MR Data

Astrophysik

The Millennium Run Observatory Data Holdings - GOODS/ERS Survey

Synthetic Im	ages									
Show 25	entries				Sea	rch:				
Cosmology *	Lightcone	SSP	IGM 0	Survey	Filter	SQL 0	CSV	PRE	PSF	SCI
wmap1	MRObs.wmap1.BC03_001	bc03	madau	GOODS/ERS	hst_wfc3_uvis_wfc225	hst_wfc3_uvis_wfc225.sql	hst_wic3_uvis_wic225.csv	hst_wfc3_uvis_wfc225.fits	F225W_psf_127x127_v3.fits	hst_wfc3_uvis_wfc225_post.fits
wmap1	MRObs.wmap1.BC03_001	bc03	madau	GOODS/ERS	hst_wfc3_uvis_wfc275	hst_wfc3_uvis_wfc275.sql	hst_wfc3_uvis_wfc275.csv	hst_wfc3_uvis_wfc275.fits	F275W_psf_127x127_v3.fits	hst_wfc3_uvis_wfc275_post.fits
wmap1	MRObswmap1.BC03_001	bc03	madau	GOODS/ERS	hst_wfc3_uvis_wfc336	hst_wfc3_uvis_wfc336.sql	hst_wfc3_uvis_wfc336.csv	hst_wfc3_uvis_wfc336.fits	F336W_psf_127x127_v3.fits	hst_wfc3_uvis_wfc336_post.fits
wmap1	MRObs.wmap1.BC03_001	bc03	madau	GOODS/ERS	hst_acs_wfc_acs435	hst_acs_wfc_acs435.sql	hst_acs_wfc_acs435.csv	hst_acs_wfc_acs435.fits	F435W_psf_127x127_v3.fits	hst_acs_wfc_acs435_post_fits
wmap1	MRObs.wmap1.BC03_001	bc03	madau	GOODS/ERS	hst_acs_wfc_acs606	hst_acs_wfc_acs606.sql	hst_acs_wfc_acs606.csv	hst_acs_wfc_acs606.fits	F606W_psf_127x127_v3.fits	hst_acs_wfc_acs606_post.fits
wmap1	MRObswmap1.BC03_001	bc03	madau	GOODS/ERS	hst_acs_w/c_acs775	hst_acs_wfc_acs775.sql	hst_acs_wfc_acs775.csv	hst_acs_wfc_acs775.fits	F775W_psf_127x127_v3.fits	hst_acs_wfc_acs775_post.fits
wmap1	MRObswmap1.BC03_001	bc03	madau	GOODS/ERS	hst_acs_wfc_acs850	hst_acs_wfc_acs850.sql	hst_acs_wfc_acs850.csv	hst_acs_wfc_acs850.fits	F850LP_psf_127x127_v3.fits	hst_acs_wfc_acs850_post.fits
wmap1	MRObs.wmap1.BC03_001	bc03	madau	GOODS/ERS	hst_wfc3_ir_wfc125	hst_wfc3_ir_wfc125.sql	hst_wfc3_ir_wfc125.csv	hst_wfc3_ir_wfc125.fits	F125W_psf_127x127_v3.fits	hst_wfc3_ir_wfc125_post.fits
wmap1	MRObs.wmap1.BC03_001	bc03	madau	GOODS/ERS	hst_wfc3_ir_wfc160	hst_wfc3_ir_wfc160.sql	hst_wfc3_ir_wfc160.csv	hst_wfc3_ir_wfc160.fits	F160W_psf_127x127_v3.fits	hst_wfc3_ir_wfc160_post.fits
wmap1	MRObswmap1.BC03_004	bc03	madau	GOODS/ERS	hst_wfc3_uvis_wfc225	hst_wfc3_uvis_wfc225.sql	hst_wfc3_uvis_wfc225.csv	hst_wfc3_uvis_wfc225.fits	F225W_psf_127x127_v3.fits	hst_wfc3_uvis_wfc225_post.fits
wmap1	MRObswmap1.BC03_004	bc03	madau	GOODS/ERS	hst_wfc3_uvis_wfc275	hst_wfc3_uvis_wfc275.sql	hst_wfc3_uvis_wfc275.csv	hst_wfc3_uvis_wfc275.fits	F275W_psf_127x127_v3.fits	hst_wfc3_uvis_wfc275_post.fits
wmap1	MRObs.wmap1.BC03_004	bc03	madau	GOODS/ERS	hst_wfc3_uvis_wfc336	hst_wfc3_uvis_wfc336.sql	hst_wfc3_uvis_wfc336.csv	hst_wfc3_uvis_wfc336.fits	F336W_psf_127x127_v3.fits	hst_wfc3_uvis_wfc336_post.fits
wmap1	MRObs.wmap1.BC03_004	bc03	madau	GOODS/ERS	hst_acs_wfc_acs435	hst_acs_wfc_acs435.sql	hst_acs_wfc_acs435.csv	hst_acs_wfc_acs435.fits	F435W_psf_127x127_v3.fits	hst_acs_wfc_acs435_post_fits
wmap1	MRObs.wmap1.BC03_004	bc03	madau	GOODS/ERS	hst_acs_wfc_acs606	hst_acs_w/c_acs606.sql	hst_acs_wfc_acs606.csv	hst_acs_wfc_acs606.fits	F606W_psf_127x127_v3.fits	hst acs wfc acs606 postfilts

• Simulation Identifier: cosmology, SAM, SSP, lightcone, IGM, survey, filter Example: WMAPI, Guo2010a, BC03, Henriques 2012a.001, Madau, HUDF, B-band

- SQL query used to generate input (.txt)
- Object input lists that can be read by Skymaker (.csv)
- "Perfect" or model images (.fits)
- PSF kernel image (.fits)
- Mock telescope image (.fits)

Millennium Run Observatory Workflow

Millennium Run Observatory Workflow

Direct links between image (coordinates), lightcones, snapshots, halotrees, fof groups, density fields, particles through the MRDB:

The MRObs browser is one way to explore those links

THE MILLENNIUM RUN OBSERVATORY

MRObs - Interactive Browser

legal notice portal about & credits help

25000

Search

bc03.m24_001

Images: UDF Viz Image w/ real UDF... UDF Viz Image w/ real UDF ... SDSS gri Image CFHTLS-Wide gri Image CFHTLS-Deep gri Image **CFHTLS-Deep riz Image** HSC/Wide riz Image HSC/Deep riz Image HSC/Ultradeep riz Image GOODS v2.0 BVz Image GOODS v2.0 Viz Image HUDF BVz Image HUDF Viz Image GOODS/ERS 9 filters Image GOODS/ERS UVIS Image GOODS/ERS SExtractor S... CANDELS/GSD YJH Image.. CANDELS/GSD BVz Image... CANDELS/COSMOS F125... CANDELS/COSMOS F160... CANDELS/UDS J,J+H,H R ... CANDELS/UDS F125W Im., CANDELS/UDS F160W Im., CANDELS/UDS J, J+H, H R.

Highlights: Blue Galaxy Red nuggets Big Galaxy Face-on bulge+disk Cluster (z=0.14) Low-mass Group (z=0.36) High-mass Group (z=0.37) Y-dropout 1 (z=7.4) Y-dropout 1 (z=8.1) Y-dropout 2 (z=8.1) Y-dropout 3 (z=8.4) Y-dropout 4 (z=7.5) J-dropout 1 (z=8.5) J-dropout 2 (z=9.5) J-dropout 3 (z=10.3)

http://galformod.mpa-garching.mpg.de/mrobs/private/browser/

Create your own simulated observations from lightcones in the MRDB

Max

Simple UWS Wel	o Client			portal about & cred help
Applications & Mode	els			
Applications & Models				
Available Applications	MROBS		LIWS based job submission portal for Mrobs codes	
Application Models	<please select=""></please>	-	choose the model to load (into input form below)	
			F	
Decementar locut Form				
Parameter input rorm				
MODE	produce perfect image	•	Choose the pipeline mode	
OBSERVER	mrobsuser		Give your name	
CONTEXT	my_observation		Give a label for your observation	
TELESCOPE	HST	•	Specify the telescope	
CAMERA	HST/ACS/WFC	•	Specify the detector	
FILTER	HST/ACS/WFC F606W	•	Specify the filter	
TOTAL_EXPTIME	1,000		Specify the total exposure time	
NEXP	10		Specify the number of sub-exposures	
COMBINE	mean	•	Specify the image combination method	
KEEP_SUBEXPOSURES	No	•		
FINAL_PIXEL_SIZE	0.06 arcsec	•	Specify the desired output pixel size	
IMAGE_SIZE_PIXELS	32768x32768 pixels	•	Specify the desired image size	
APPLY_STARS	No	٠	Do you want to add stars?	
APPLY_IGM	Yes	•	Do you want to apply IGM absorption?	
IGMTABLE	Madau (1995) model	٠	Specify the IGM absorption model	
TABLENAME	henriques2012a 001	٠	Select the lightcone	
SCHEMA	Bruzual and Charlot (2003)	•	Select the SED library	

(under construction, see Matthias Egger's talk)
On-going developments

- MRObs simulations of important surveys to better study the data e.g. HST UDF, CANDELS, CLASH (JWST) ESOVST/VISTA public surveys Dark Energy Surveys (HETDEX, DES, LSST, HSC, PFS, JPAS, Euclid)
- make it possible for people to run their own simulations online
- gravitational lensing (see talk by Ben Metcalfe)
- combine MR and MS-II to ease volume and resolution limitations (e.g. useful for dwarf galaxies nearby or typical galaxies at very high redshifts)
- develop a <u>fully-integrated workflow that combines SAMs</u>, <u>lightcones</u>, and <u>MRObs images</u> for maximal flexibility and parameter space studies constrained by observations