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Outline

•Construction of a galaxy group catalog

• Fraction of galaxies in groups

•Group-galaxy cross-correlation analysis

• Properties of central and satellite galaxies 

Knobel et al. (2009, 2012a)

Knobel et al. (2012a)

Knobel et al. (2012b)

Knobel et al. (2012c)



Millennium Simulation

• calibration
• optimizing group-finding parameters
• assigning probabilities to be a central/satellite

We used the Millennium Simulation (COSMOS light cones) for...

• tests and error determination
• testing codes
• exploring systematic effects
• cosmic variance
• correlation between data bins

• comparison with simulations (theoretical models)

danger of circularity



• 1.7 deg2 COSMOS field

• magnitude limited by IAB < 22.5

• redshift range: 0.1 < z < 1.2
• 2 released samples: 10k and 20k

zCOSMOS survey
10K:

20K:



zCOSMOS 10k mock example

„Mocks“

24 COSMOS light cones based on 
the Millennium DM simulation.



Group identification

Optimizing group-finding parameters using the mocks
1848 KNOBEL ET AL. Vol. 697
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Figure 4. Distributions of parameter sets in the c1(8)–p1(8) plane for a wide range of group-finding parameters. In the left panel are the parameter sets for FOF and
in the right panel those for VDM. Each parameter set is positioned at the average value for the 24 separate mock catalogs. The parameter sets are color coded by the
goodness parameter g2(8) indicating the degree of overmerging or fragmentation. The dotted line is the largest circle around the upper right corner being empty of
points, i.e., the radius of this circle is equal to the smallest g1(8) value. The best g1(8) parameter set is marked by a diamond and the error bars exhibit the scatter
among the 24 mocks for this particular parameter set. The labeled black points show the sites where the best g1(N ) sets for different N reside on this plane, N being
denoted by the label of the points. Although these best sets inhabit, in general, very different places, they converge for N ! 8, at least for FOF. The position of the
best g2(8)-set is marked by a triangle and the one of the best g3(8) by a square.

richness !N that are field galaxies (“interlopers”). Like c1(N ),
p1(N ), etc., Sgal(N ) and fI(N ) will also take values between 0
and 1.

It is well known (e.g., Frederic 1995; Gerke et al. 2005) that a
perfect reconstructed group catalog is impossible to achieve and
furthermore, that completeness and purity tend to be mutually
exclusive. As would be expected, the higher the completeness,
the lower the purity, and vice versa (see Figure 4). There is also
a similar dichotomy between overmerging and fragmentation.
Therefore, we introduce additional measures of “goodness”,
which combine the statistics such as completeness and purity
in a way that maximizing (or minimizing) them yields a sort of
“optimal” group catalog. We formally define as (omitting the
dependence of N for the sake of clarity):

g1 =
√

(1 − c1)2 + (1 − p1)2 (19)

g2 = c2

c1

p2

p1
(20)

g3 =
√

(1 − Sgal)2 + f 2
I . (21)

The meaning of these quantities is as follows. Since a perfect
group catalog features (c1, p1) = (1, 1), i.e., entirely complete
and absolutely pure, the reconstructed group catalog should
come as close as possible to this point in the c1–p1 plane. So
g1 gives the distance to this optimal point in the c1–p1 plane
and thus is a measure of the balance of completeness and
purity. Then, a good group catalog should exhibit c1 " c2
and p1 " p2 meaning that essentially no overmerging and
fragmentation is present in the catalog. Hence, g2 measures the
balance between overmerging and fragmentation and should
also approach 1. Finally, g3 is similar to g1 but is on a galaxy-
to-group basis instead of a group-to-group basis. As is clear
from their definitions, these measures of goodness again take
only values between 0 and 1. It is clear that g1 and g3 should be
minimized, while g2 should be maximized.

3.3. Optimization Strategy

Since there exists no single perfect reconstructed group
catalog, one has to optimize the group-finding parameters, in
principle, in a way that the resulting group catalog serves as

well as possible the intended scientific purpose. However, as we
will see, there seems to be a rather natural way to construct a
group catalog that is useful for many different purposes. The
only way to find such optimal parameters of a groupfinder is to
run it on the mocks for different parameter sets, and to compare
the resulting group catalogs by means of the statistics introduced
in the previous section.

The completeness c1(8) and purity p1(8) of the reconstructed
group catalogs, after running FOF and VDM over a large
parameter space, are shown in Figure 4. It is obvious that the
points do not extend arbitrarily close to the right upper corner
(i.e., the perfect group catalog). The parameters c1(8) and p1(8)
are in some sense anticorrelated. In fact, the cloud of points
seem to feature a boundary toward high completeness and purity
beyond which there is a region totally free of points. It is notable,
how similar this boundary is for FOF and VDM approaches—
clearly neither is markedly superior to the other. The same holds
for the g2(8)-goodness, color-coded in the figure, along this
boundary region. These similarities between FOF and VDM
are observed for all richness classes N. This indicates that this
boundary is probably the limit of what can be achieved with
a zCOSMOS-10 k-like sample and does not depend on the
choice of algorithm. This also suggests that the choice of a
particular groupfinder such as FOF or VDM is less important
than sometimes argued, although, as we will see, the properties
of group catalogs obtained using the two groupfinders are not
absolutely identical.

VDM, much more than FOF, also exhibits some scatter in the
range given by 0.5 < c1(8) < 0.85 and p1(8) > 0.65. The
existence of such parameter sets is a natural side-effect of
the relatively large number of free parameters of the VDM
groupfinder resulting in many parameter combinations with
obviously suboptimal properties in terms of c1(8) and p1(8).
The extent of this scatter, of course, also depends strongly on
the explored range of values in the parameter space. Since
we are interested in parameter sets yielding simultaneously
high completeness and high purity, we will only focus on the
boundary mentioned above.

The challenge is to find the best group catalogs among those
plotted in Figure 4, making the best compromise between
c1 and p1. A natural choice is the point that lies closest to
(c1, p1) = (1, 1) indicated by the diamond. According to
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zCOSMOS 20k sample
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Figure 7. Positions of the zCOSMOS 20k groups in redshift space. The groups are plotted as a function of right ascension and comoving distance, where the richness
N of the groups is color coded as indicated above the cone. The labels on the left side of the cone indicate the redshift and the ones on the right side the corresponding
comoving distance. Note that the transverse scale of the cone has been stretched by about a factor of two for clarity. In reality, the comoving depth of this cone (from
z = 0.1 to 1) is about 70 times longer than its transverse comoving size at z = 0.5. The comoving transverse scale of the cone is indicated by the horizontal bar at the
top. The clustering of the groups and the cosmic large-scale structure are clearly visible up to the highest redshifts.
(A color version of this figure is available in the online journal.)

factor of more than two in membership) compared to the real
group. The fact that Figure 6 is basically independent of N is
a consequence of the application of the multi-run scheme (see
Section 3.2).

Since the FOF groups depend solely on the two quantities
lper and lpar, which are the linking lengths perpendicular and

parallel to the line of sight, respectively, a natural question
is whether a given group is sensitive to the particular choice
of these linking lengths, or whether slightly different values
would not significantly alter the resulting group? To answer this
question we have introduced a “group robustness” parameter,
frob(f ) for each group, by running the groupfinder with the
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• ~ 1500 groups

• 0.1 < z < 1

•  

• well understood 
systematics

• publicly available
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Growth of cosmic group environment
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Fraction of galaxies in groups in volume limited galaxy and group samples

We observe the growth of the group 
environment with cosmic time (as expected)



Group-galaxy cross-correlation analysis
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real gr.
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Group-galaxy cross-correlation functions for the mocks:

Knobel et al. (2012b)



Kitzbichler (mean of 24 mocks)

zCOSMOS

linear correlation function
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Figure 5. Group-galaxy cross-correlation functions for the zCOSMOS 20k
sample (red points) at 0.5 ! z ! 0.8. The different panels correspond to
different mass bins as indicated by the labels in units of log(M/M!). The filled
points mark the linear regime and were used for the estimation of the bias.
The dashed curve shows the linear model wlin with fitted amplitude and the
solid black curve shows the mean of the 24 mock cross-correlation functions
(i.e., red lines in Figure 3). The error bars indicate the standard deviation of the
correlation function of the 24 mock catalogs and the vertical dashed line marks
the smallest transverse box size for the corresponding redshift bin.
(A color version of this figure is available in the online journal.)

in which a significant detection of the one-halo term is visible
for the higher mass bin. The excess in the correlation function
for the actual data, relative to the mock catalogs, occurs at large
scales in the linear regime.
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Figure 6. Group-galaxy cross-correlation functions for the zCOSMOS 20k
sample (red points) at 0.2 ! z ! 0.5. The different panels correspond to
different mass bins as indicated by the labels in units of log(M/M!). The filled
points mark the linear regime and were used for the estimation of the bias.
The dashed curve shows the linear model wlin with fitted amplitude and the
solid black curve shows the mean of the 24 mock cross-correlation functions
(i.e., red lines in Figure 4). The error bars indicate the standard deviation of the
correlation function of the 24 mock catalogs and the vertical dashed line marks
the smallest transverse box size for the corresponding redshift bin.
(A color version of this figure is available in the online journal.)

6. MASS ESTIMATION

In this section, we present the estimated bias for the groups.
We first describe the method of estimation, then we perform
a consistency test using the mock catalogs to explore possible
systematics, and finally we discuss the measured masses from
the bias in the actual data.

6.1. Estimation Method

To estimate the linear group bias bG, we compare the
estimated correlation functions to a model correlation function,
which is a scaled version of the projected linear correlation
function wlin for the cosmology of the mock catalogs. To
compute it, we use the linear power spectrum

Plin(k, z) = AknsT 2(k)D2(z) , (16)

with T (k) being the transfer function, D(z) being the linear
growth function, ns being the spectral index, and A being the
normalization constant depending on σ8. We take the fitting
formula for the transfer function from Eisenstein & Hu (1999)
using the iCosmo software package22 (Refregier et al. 2011).
The linear correlation function ξlin is then obtained by the Fourier
transformation

ξlin(r, z) = 1
(2π )3

∫
Plin(k, z) eikr dk3 (17)

= 1
2π2

∫ ∞

0
k2 Plin(k, z)

sin(kr)
kr

dk (18)

and the corresponding projected correlation function by integra-
tion along π

wlin(rp, z) = 2
∫ πmax

πmin

ξlin

(√
π2 + r2

p , z
)

dπ , (19)

22 http://www.icosmo.org
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Group-galaxy cross-correlation analysis
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Figure 9. Estimated mean masses Mb from the correlation function analysis as a function of the effective fudge mass Meff within the corresponding mass bins (see
Table 1). The red points show the 20k groups and the black points correspond to each of the 24 mock catalogs. The different mass bins are well separated from each
other in terms of Meff and the galaxy sample that was used is indicated in the panels. Equality of Mb and Meff is marked by the dashed line.

low-redshift universe with a detailed comparison to the ΛCDM
cosmology (e.g., Berlind et al. 2006; Wang et al. 2008). The
masses Mb for the zCOSMOS groups are, however, generally
larger than the average Mb for the mock catalogs reflecting
the high amplitudes of the correlation functions in Figures 5
and 6 (i.e., the measured bias is typically about 1σ–1.5σ higher
than the corresponding mean bias in the 24 mock catalogs). An
exceptionally large bias is measured for the highest mass bin at
high redshift, this being 15% higher than the largest bias seen in
the corresponding 24 mock samples. This is an about 3σ effect.
Adopting a lower σ8 of 0.8 would mitigate the discrepancy by
decreasing the corresponding Mb for the actual data by ∼0.1 dex,
but it would still be higher than in any of the 24 mock catalogs.
The reason for this unusually large bias measurement might
be the huge structure at redshift z ∼ 0.7 (see Figure 1) in
the COSMOS field (see also the discussion in Meneux et al.
2009). In fact, of the 24 groups in this mass bin, 19 lie in the
redshift range 0.65 ! z ! 0.75 and the remaining five groups
are at z < 0.55. Thus, the corresponding correlation function is
almost entirely dominated by the structure at z ∼ 0.7.

Thus, we conclude that in total our finding is essentially
consistent with simulations. Although this analysis provides
an important overall consistency check, the rather large error
bars emphasize that these correlation functions do not provide
precise estimates of the halo masses of particular tracers unless
very large samples in very large fields are available. There
are, however, indications that the structures observed in the
COSMOS field correspond to rather rare realizations of the

mock catalogs. The relatively high values of the bias reflecting
the large amplitudes of the measured correlation functions are
in general agreement with previous studies (McCracken et al.
2007; Meneux et al. 2009; Kovač et al. 2010; de la Torre et al.
2010, 2011), which reported unusually strong clustering in the
COSMOS field.

7. CONCLUSION

We have performed a group-galaxy cross-correlation analysis
in two redshift bins (i.e., 0.5 ! z ! 0.8 and 0.2 ! z !
0.5) using the high-quality zCOSMOS group sample cross-
correlated with two spectroscopic zCOSMOS galaxy samples.
The aim was to perform a consistency test between the clustering
strength of groups and their masses that had previously been
estimated on the basis of the observed richness of the groups. To
compute the group bias bG, we measured the cross-correlation
function between groups and galaxies and eliminated the galaxy
bias bg by also measuring the galaxy autocorrelation function.
The analysis was carried out using both magnitude- and volume-
limited galaxy samples to demonstrate the robustness of our
estimates.

The mock catalogs are a valuable tool to explore the sys-
tematics of the methods and samples. A comparison of the
cross-correlation functions for real mock groups and for all re-
constructed mock groups shows that our group catalog is suited
for a correlation function analysis, but that we overestimate
the correlation function for real groups by about 20% due to

11
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The bias b increases with 
mass (as expected)



Fraction of satellites
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Red fractions

5

will generally be of higher stellar mass. However, our in-
terest is in comparing galaxies of the same stellar mass,
so as to remove the (strong) e↵ects of mass-quenching.
Using the red fractions of central and satellite galaxies,

we can straightforwardly compute the average “satellite
quenching e�ciency” ✏s defined as

✏s(M) =
fr,s(M)� fr,c(M)

fb,c(M)
. (4)

The average in this case is taken over all environments
within the halos, i.e., the local densities or group-centric
distances. ✏s can be interpreted as the fraction of (sur-
viving) blue centrals at a given stellar mass that are
quenched when they become satellites by falling into an-
other dark matter halo. The value as measured in SDSS
is about 0.4 (uncorrected for purity) and is essentially
constant with mass (van den Bosch et al. 2008; Peng
et al. 2012). However, as mentioned above, the precise
value may depend on the specific definition of central
and satellite galaxies, and whether one corrects for im-
purities.
In order to compute fr,c(M) and fr,s(M) in the zCOS-

MOS sample, we again correct for impurities. If f̃r,c and
f̃r,s are the observed (uncorrected) red fractions of cen-
trals and satellites, in a given stellar mass bin, then these
will be related to the true red fractions fr,c and fr,s of
centrals and satellites by

f̃r,c = fr,cPc + (1� Pc)fr,s, (5)

f̃r,s = fr,sPs + (1� Ps)fr,c. (6)

These simultaneous equations can be trivially solved to
give

fr,c =
1

C

⇣
f̃r,s(1� Pc)� f̃r,cPs

⌘
(7)

fr,s =
1

C

⇣
f̃r,c(1� Ps)� f̃r,sPc

⌘
, (8)

where
C = (1� Pc)(1� Ps)� PcPs. (9)

Clearly fr,c and fr,s are not well defined if both Pc and
Ps are equal to 50%, as C is zero in this case, and there
is no way to recover the correct red fractions if both the
sample of centrals and the sample of satellites are equal
mixtures of (real) central and (real) satellites. It should
be noted that the above equations are general and may
be applied for subsets of centrals and satellites, chosen to
maximize their purities, and not just to the dichotomous
sample in which every galaxy is retained, provided that
the construction of the subsample(s) is not dependent on
the color of the galaxy. From this point on, all quoted
red fractions are corrected in this way.
The (corrected) red fractions of centrals and satellites

for the dichotomous sample are shown in Figure 2 for all
three redshift bins. The red fractions of the satellites fr,s
(blue lines) are always higher than those of the centrals,
at all redshifts and at all masses probed by this study.
The corresponding satellite quenching e�ciency ✏s

(black solid lines) is also found to be essentially indepen-
dent of mass, at each redshift, and to scatter around a
value of ⇠0.5. Within our sample there is no clear change
in this quantity with redshift. Furthermore, the value is
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Figure 2. Red fraction of centrals and satellites as a function of
stellar mass M within the three redshift bins. The red lines re-
fer to the centrals and the blue lines to the satellites, respectively,
of a dichotomous sample. The solid black line corresponds to the
satellite quenching e�ciency derived from these red fractions. For
comparison, the dashed black lines show the satellite quenching
e�ciencies for high purity samples of centrals and satellites. At
any redshift the red fractions of centrals and satellites are clearly
distinct and the satellite quenching e�ciencies are essentially in-
dependent of mass. All error bars represent the upper and lower
quartiles derived from bootstrapping within each mass bin. All
quantities are corrected for color incompleteness and impurities
due to misidentifications of centrals and satellites.

consistent with that found at low redshift in SDSS (van
den Bosch et al. 2008; Peng et al. 2012) especially if the
SDSS measurements are corrected (as they should be) for
impurities in the samples. We note that there may be ev-
idence for a possible deviation from mass-independence
at the very highest stellar masses, where the red fraction
of satellites in two of our three redshift bins increases
sharply towards unity, but the statistical significance of
this e↵ect is not yet compelling. It may also be present
in the SDSS analyses of van den Bosch et al. (2008) and
Peng et al. (2012), although the error bars are also big
in these analyses.
To test our results for robustness, we recomputed ✏s

for the (corrected) red fractions of high purity samples
of centrals and satellites. A high purity subsample of
centrals is just given by the set of spectroscopic galaxies
that are not associated to any group (i.e., with member-
ship probability p = 0), and a high purity subsample of
satellites is given by selecting all galaxies with p > 0.5,
pM < 0.1, pMA < 0.1 that are in groups with at least four
observed spectroscopic members. Both of these samples
are about 2%-7% purer than the corresponding dichoto-
mous samples, where the di↵erence in purity increases
with mass. The gain in purity comes at a cost in com-

fr of satellites

fr of centrals
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value of ⇠0.5. Within our sample there is no clear change
in this quantity with redshift. Furthermore, the value is
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Figure 2. Red fraction of centrals and satellites as a function of
stellar mass M within the three redshift bins. The red lines re-
fer to the centrals and the blue lines to the satellites, respectively,
of a dichotomous sample. The solid black line corresponds to the
satellite quenching e�ciency derived from these red fractions. For
comparison, the dashed black lines show the satellite quenching
e�ciencies for high purity samples of centrals and satellites. At
any redshift the red fractions of centrals and satellites are clearly
distinct and the satellite quenching e�ciencies are essentially in-
dependent of mass. All error bars represent the upper and lower
quartiles derived from bootstrapping within each mass bin. All
quantities are corrected for color incompleteness and impurities
due to misidentifications of centrals and satellites.

consistent with that found at low redshift in SDSS (van
den Bosch et al. 2008; Peng et al. 2012) especially if the
SDSS measurements are corrected (as they should be) for
impurities in the samples. We note that there may be ev-
idence for a possible deviation from mass-independence
at the very highest stellar masses, where the red fraction
of satellites in two of our three redshift bins increases
sharply towards unity, but the statistical significance of
this e↵ect is not yet compelling. It may also be present
in the SDSS analyses of van den Bosch et al. (2008) and
Peng et al. (2012), although the error bars are also big
in these analyses.
To test our results for robustness, we recomputed ✏s

for the (corrected) red fractions of high purity samples
of centrals and satellites. A high purity subsample of
centrals is just given by the set of spectroscopic galaxies
that are not associated to any group (i.e., with member-
ship probability p = 0), and a high purity subsample of
satellites is given by selecting all galaxies with p > 0.5,
pM < 0.1, pMA < 0.1 that are in groups with at least four
observed spectroscopic members. Both of these samples
are about 2%-7% purer than the corresponding dichoto-
mous samples, where the di↵erence in purity increases
with mass. The gain in purity comes at a cost in com-

Satellite quenching efficiency:

Interpretation:

Fraction of centrals that are quenched 
because they are satellites

5

will generally be of higher stellar mass. However, our in-
terest is in comparing galaxies of the same stellar mass,
so as to remove the (strong) e↵ects of mass-quenching.
Using the red fractions of central and satellite galaxies,

we can straightforwardly compute the average “satellite
quenching e�ciency” ✏s defined as

✏s(M) =
fr,s(M)� fr,c(M)

fb,c(M)
. (4)

The average in this case is taken over all environments
within the halos, i.e., the local densities or group-centric
distances. ✏s can be interpreted as the fraction of (sur-
viving) blue centrals at a given stellar mass that are
quenched when they become satellites by falling into an-
other dark matter halo. The value as measured in SDSS
is about 0.4 (uncorrected for purity) and is essentially
constant with mass (van den Bosch et al. 2008; Peng
et al. 2012). However, as mentioned above, the precise
value may depend on the specific definition of central
and satellite galaxies, and whether one corrects for im-
purities.
In order to compute fr,c(M) and fr,s(M) in the zCOS-

MOS sample, we again correct for impurities. If f̃r,c and
f̃r,s are the observed (uncorrected) red fractions of cen-
trals and satellites, in a given stellar mass bin, then these
will be related to the true red fractions fr,c and fr,s of
centrals and satellites by

f̃r,c = fr,cPc + (1� Pc)fr,s, (5)

f̃r,s = fr,sPs + (1� Ps)fr,c. (6)

These simultaneous equations can be trivially solved to
give

fr,c =
1

C

⇣
f̃r,s(1� Pc)� f̃r,cPs

⌘
(7)

fr,s =
1

C

⇣
f̃r,c(1� Ps)� f̃r,sPc

⌘
, (8)

where
C = (1� Pc)(1� Ps)� PcPs. (9)

Clearly fr,c and fr,s are not well defined if both Pc and
Ps are equal to 50%, as C is zero in this case, and there
is no way to recover the correct red fractions if both the
sample of centrals and the sample of satellites are equal
mixtures of (real) central and (real) satellites. It should
be noted that the above equations are general and may
be applied for subsets of centrals and satellites, chosen to
maximize their purities, and not just to the dichotomous
sample in which every galaxy is retained, provided that
the construction of the subsample(s) is not dependent on
the color of the galaxy. From this point on, all quoted
red fractions are corrected in this way.
The (corrected) red fractions of centrals and satellites

for the dichotomous sample are shown in Figure 2 for all
three redshift bins. The red fractions of the satellites fr,s
(blue lines) are always higher than those of the centrals,
at all redshifts and at all masses probed by this study.
The corresponding satellite quenching e�ciency ✏s

(black solid lines) is also found to be essentially indepen-
dent of mass, at each redshift, and to scatter around a
value of ⇠0.5. Within our sample there is no clear change
in this quantity with redshift. Furthermore, the value is
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Figure 2. Red fraction of centrals and satellites as a function of
stellar mass M within the three redshift bins. The red lines re-
fer to the centrals and the blue lines to the satellites, respectively,
of a dichotomous sample. The solid black line corresponds to the
satellite quenching e�ciency derived from these red fractions. For
comparison, the dashed black lines show the satellite quenching
e�ciencies for high purity samples of centrals and satellites. At
any redshift the red fractions of centrals and satellites are clearly
distinct and the satellite quenching e�ciencies are essentially in-
dependent of mass. All error bars represent the upper and lower
quartiles derived from bootstrapping within each mass bin. All
quantities are corrected for color incompleteness and impurities
due to misidentifications of centrals and satellites.

consistent with that found at low redshift in SDSS (van
den Bosch et al. 2008; Peng et al. 2012) especially if the
SDSS measurements are corrected (as they should be) for
impurities in the samples. We note that there may be ev-
idence for a possible deviation from mass-independence
at the very highest stellar masses, where the red fraction
of satellites in two of our three redshift bins increases
sharply towards unity, but the statistical significance of
this e↵ect is not yet compelling. It may also be present
in the SDSS analyses of van den Bosch et al. (2008) and
Peng et al. (2012), although the error bars are also big
in these analyses.
To test our results for robustness, we recomputed ✏s

for the (corrected) red fractions of high purity samples
of centrals and satellites. A high purity subsample of
centrals is just given by the set of spectroscopic galaxies
that are not associated to any group (i.e., with member-
ship probability p = 0), and a high purity subsample of
satellites is given by selecting all galaxies with p > 0.5,
pM < 0.1, pMA < 0.1 that are in groups with at least four
observed spectroscopic members. Both of these samples
are about 2%-7% purer than the corresponding dichoto-
mous samples, where the di↵erence in purity increases
with mass. The gain in purity comes at a cost in com-

Knobel et al. (2012c)



Summary

•Milennium Simulation (COSMOS light cones) is used for calibration, 
exploring systematics, and comparison with observations

•New semi-analytics by Guo et al. are a better match to the observations

•We detect the growth of the group environment with cosmic time

•We detect that the bias of groups increases with halo mass

• The satellite quenching efficiency is constant with stellar mass and 
unaltered to z ~ 1


