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What is interesting about gas in accreting dark matter
halos evolving over redshifts?



What is interesting about gas in accreting dark matter
halos evolving over redshifts?

New observations of galaxy clusters are giving high redshift information!
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Why do we look for 1D model of gas in accreting dark
matter halos evolving over redshifts?

Extensively studied

a
simple model

Physical :
processes like that describes
<+— cooling/feedback & both Cosmological
spatial variation in evolution of galaxy
“Isolated” massive (Recent AMR and clusters

clusters N-body

with hydrodynamics simulations

try to
capture both /

aspects)

Not exactly correct!
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Why do we look for 1D model of gas in accreting dark
matter halos evolving over redshifts?
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What is the effect of a temperature gradient in ICM which evolves with redshift?



To start with: how to model the MAH of the DM halos that
determine the gravitational potential for gas(Van den
Bosch, 2002)

They discuss an algorithm to follow the main trunk of the merger tree!
Or trace the most massive progenitor(MMP) as M(2)
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Virial mass V/5ppand Ko00 can be calculated as a function of time!

NFW potential, ONFW can be calculated as a function of time!

dPNFW
dr

= ¢g(7, t)can be calculated as a function of time!

The information of the average history of merger and accretion
encapsulated in g(r,t)-to be included in the momentum
equation in hydrodynamics; assumption is dark matter comes to
equilibrium faster than gas



Initial Conditions: the gas in the halo is in hydrostatic
balance following the gravitational potential due to DM

dp(r,t
P ) o g )
p=Kp’
T PHITLp
pkB

The density at some given radius is a free parameter along with K(entropy parameter)



A typical initial condition at z=6
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Lagrangian shell hydrodynamics (algorithm taken from
Thoul&Weinberg, 1995)

dm = 4mr® pdr
p=(y—1)pu
d d
d—: — —47TT2 dTZ:L ngw(T, t)
Ae = n*A(T)

du pdp T —A,

dt ~ p? dt 0




First trial run with no cooling and heating
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First trial run with no cooling and heating: density

10

evolution
Mhaio = 5 x 10 Mg
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First trial run with no cooling and heating: density
evolution

Mhaio = 5 x 10 Mg
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Central densities are tgo high!
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First trial run with no cooling and heating: density
evolution

Mhaio = 5 x 10 Mg
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First trial run with no cooling and heating: temperature

evolution
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First trial run with no cooling and heating: temperature
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The inner boundary and specific angular momentum

Inner boundary condition for the first trajectory v=0, r=1 kpc

t(Gyr)
How accurate is that?



The inner boundary and specific angular momentum

Inner boundary condition for the first trajectory v=0, r=1 kpc

\ ——————
15 B -
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So the inner boundary condition was good enough!



Including radiative cooling: tested with zero metallicity

cooling curve /
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Runs with cooling: a general initial condition for different
halo evolution

The
Fiducial case: M}.00 = D X 1013M@ K = vV _ 9 keVem?

ny—1

P21y — ]-Opcrit (tO)
Other cases: [, (Malo) = Kini(Mnato/M13)*/?
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Runs with cooling: a general initial condition for different
halo evolution

The
Fiducial case: M}.00 = D X 1013M@ K = vV _ 9 keVem?

ny—1

P21y — ]-Opcrit (tO)
Other cases: [, (Mpalo) = Kini(Mnato/M13)*/?

1800

"l Myaioo =5 x 10" Mg

1400 |
1200 -

1000

r(kpc)

800 |

600 [-

400 |

200 |

4

12 14 12 14




Runs with cooling: a general initial condition for different

halo evolution

The
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Mass vs time: evolution for varying halo masses
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Mass vs time: evolution for varying halo masses
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Mass vs time: evolution for varying halo masses
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Idealized heating: Bondi-Hoyle-Lyttleton accretion

We use the first shell and
second trajectory for ambient

P AraG2 M2, : Jy and velocity
@ +<@2) : Ny — AnGMpgmy,
€,.0TC
Efeed = ermin(Mprr, Mgqqd)c® er = 0.1
er = 0.005

. 4 .
Efeed47rr2dr/§7rR3 — 3Efe€dr2dr/R3

Feedback energy only injected
within R, assuming constant
energy density




Trajectory evolution with heating
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Comparison of total mass accumulated and cold gas mass
with and without heating
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Comparison of total mass accumulated and cold gas mass
with and without heating
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New boundary and initial conditions following outer
density fits of Diemer&Kravtsov,2014

Pouter — pm(be (T/5R200m)—86 T 1)

A fitting formula which along with a modified Einasto profile for the inner
part of the cluster, makes the density profiles remarkably self-similar. We

———————— use the fit to the outer density profile only.
Power law A
A stronger
variation
with 20
i redshift.
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New boundary and initial conditions following outer

density fits of Diemer&Kravtsov,2014

Change in initial condition: Upto virial radius, hydrostatic profile,

Beyond virial radius DK density profile multiplied by universal baryon fraction
Change in boundary condition: density in the outer boundary changes with time.
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t=1.832
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of virial radius in
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New boundary and initial conditions following outer

density fits of Diemer&Kravtsov,2014

How the trajectories evolve without cooling?

Only the outer shell seems to be denser than that without DK boundary.

Gas layers
pushing in
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New boundary and initial conditions following outer
density fits of Diemer&Kravtsov,2014

How the trajectories evolve without cooling?
Only the outer shell seems to be denser than that without DK boundary.
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New boundary and initial conditions following outer
density fits of Diemer&Kravtsov,2014

Trajectories with cooling
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New boundary and initial conditions following outer
density fits of Diemer&Kravtsov,2014

Trajectories with cooling

Mhiaioo = 5 x 10 M
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New boundary and initial conditions following outer
density fits of Diemer&Kravtsov,2014

Trajectories with cooling
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New boundary and initial conditions following outer
density fits of Diemer&Kravtsov,2014

cold gas within 30 kpc, My,
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New boundary and initial conditions following outer
density fits of Diemer&Kravtsov,2014
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New boundary and initial conditions following outer
density fits of Diemer&Kravtsov,2014

Mhato = 5 x 102 M
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On a final note

More experimentation with other heating mechanisms and some of the parameters
could be done, like the radius within which feedback energy is driven in. Some
mechanical energy could be injected as well in the form of feedback.

A transition from zero metallicity cooling to the cooling in the presence of metals could
be added. That may not make a major difference in the low redshifts.

Some precise comparisons with observed data of the 1D profiles for cluster variables
like density and temperature, are on the way.

Instead of incorporating an average history of DM halos, N-body simulations could
provide the exact history for different halos. In such a situation it could be interesting to
check if there is a difference in the total gas accreted or cold gas formed or find the CC

and NCC dichotomy.



