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What is interesting about gas in accreting dark matter 
halos evolving over redshifts? 



What is interesting about gas in accreting dark matter 
halos evolving over redshifts? 

New observations of galaxy clusters are giving high redshift information!



Why do we look for 1D model of gas in accreting dark 
matter halos evolving over redshifts?
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Why do we look for 1D model of gas in accreting dark 
matter halos evolving over redshifts?

What is the effect of a temperature gradient in ICM which evolves with redshift?
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Mcdonalds et al., 2014



To start with: how to model the MAH of the DM halos that 
determine the gravitational potential for gas(Van den 

Bosch, 2002)
They discuss an algorithm to follow the main trunk of the merger tree!

Or trace the most massive progenitor(MMP) as M(z)
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Virial mass           and           can be calculated as a function of time!

NFW potential,             can be calculated as a function of time!

                               can be calculated as a function of time!

The information of the average history of merger and accretion  
encapsulated in g(r,t)-to be included in the momentum 

equation in hydrodynamics; assumption is dark matter comes to 
equilibrium faster than gas

M200

�NFW

R200

d�NFW

dr
= g(r, t)



dp(r, t0)

dr
= �⇢(r, t0)g(r, t0)

Initial Conditions: the gas in the halo is in hydrostatic  
balance following the gravitational potential due to DM

p = K⇢�

T =
pµmp

⇢kB

The density at some given radius is a free parameter along with K(entropy parameter)



A typical initial condition at z=6

10�2 10�1 100

r/r200

10�1

100

101

102

103

⇢/⇢200

T(keV)

tcool

t↵

Mhalo0 = 5 ⇥ 1013M�

Mhalo0 = 5 ⇥ 1014M�



Lagrangian shell hydrodynamics (algorithm taken from 
Thoul&Weinberg, 1995)

dm = 4⇡r2⇢dr

dv

dt
= �4⇡r2

dp

dm
� gNFW (r, t)

du
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=

p

⇢2
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dt
+

�� ⇤c

⇢

p = (� � 1)⇢u

⇤c = n2⇤(T )



First trial run with no cooling and heating 
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First trial run with no cooling and heating: density 
evolution
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First trial run with no cooling and heating: density 
evolution
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First trial run with no cooling and heating: temperature 
evolution
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First trial run with no cooling and heating: temperature 
evolution
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The inner boundary and specific angular momentum
v=0, r=1 kpcInner boundary condition for the first trajectory

How accurate is that?



The inner boundary and specific angular momentum
v=0, r=1 kpcInner boundary condition for the first trajectory

How accurate is that?

Instead of the inner boundary condition we put an idealised  
specific angular momentum term for all shells 

j = 2rdV200

So the inner boundary condition was good enough!



Including radiative cooling: tested with zero metallicity 
cooling curve

Sub-cycling at each  
hydrodynamic step
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⇢
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Runs with cooling: a general initial condition for different 
halo evolution
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Runs with cooling: a general initial condition for different 
halo evolution
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Mass vs time: evolution for varying halo masses
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Mass vs time: evolution for varying halo masses
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Mass vs time: evolution for varying halo masses
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Idealized heating: Bondi-Hoyle-Lyttleton accretion

ṀBHL =
4⇡↵G2M2

BH⇢

(c2s + v2)
3
2

ṀEdd =
4⇡GMBHmp

✏r�T c

✏r = 0.1Ėfeed = ✏fmin(MBHL,MEdd)c
2

✏f = 0.005

Ėfeed4⇡r
2dr/

4

3
⇡R3 = 3Ėfeedr

2dr/R3R

r Feedback energy only injected 
within R, assuming constant  

energy density

We use the first shell and 
 second trajectory for ambient 

density and velocity



Trajectory evolution with heating
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Trajectory evolution with heating
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Comparison of total mass accumulated and cold gas mass 
with and without heating
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Comparison of total mass accumulated and cold gas mass 
with and without heating
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New boundary and initial conditions following outer 
density fits of Diemer&Kravtsov,2014 

⇢
outer

= ⇢
m

(b
e

(r/5R200m)�se + 1)

A fitting formula which along with a modified Einasto profile for the inner 
part of the cluster, makes the density profiles remarkably self-similar. We 

use the fit to the outer density profile only.

A stronger  
variation 

with 
redshift.  
Hence 

we try to 
interpolate 

the 
parameters 
for a high  

value of peak  
height 



New boundary and initial conditions following outer 
density fits of Diemer&Kravtsov,2014 

Change in initial condition: Upto virial radius, hydrostatic profile, 
Beyond virial radius DK density profile multiplied by universal baryon fraction 

Change in boundary condition: density in the outer boundary changes with time. 
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New boundary and initial conditions following outer 
density fits of Diemer&Kravtsov,2014 

How the trajectories evolve without cooling? 
Only the outer shell seems to be denser than that without DK boundary. 
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New boundary and initial conditions following outer 
density fits of Diemer&Kravtsov,2014 

How the trajectories evolve without cooling? 
Only the outer shell seems to be denser than that without DK boundary. 
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New boundary and initial conditions following outer 
density fits of Diemer&Kravtsov,2014 

Trajectories with cooling
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New boundary and initial conditions following outer 
density fits of Diemer&Kravtsov,2014 

Trajectories with cooling
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New boundary and initial conditions following outer 
density fits of Diemer&Kravtsov,2014 

Trajectories with cooling
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New boundary and initial conditions following outer 
density fits of Diemer&Kravtsov,2014 
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New boundary and initial conditions following outer 
density fits of Diemer&Kravtsov,2014 
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New boundary and initial conditions following outer 
density fits of Diemer&Kravtsov,2014 
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On a final note

More experimentation with other heating mechanisms and some of the parameters 
could be done, like the radius within which feedback energy is driven in.  Some 

mechanical energy could be injected as well in the form of feedback.

Some precise comparisons with observed data of the 1D profiles for cluster variables 
like density and temperature, are on the way.

A transition from zero metallicity cooling to the cooling in the presence of metals could  
be added. That may not make a major difference in the low redshifts.

Instead of incorporating an average history of DM halos, N-body simulations could 
provide the exact history for different halos. In such a situation it could be interesting to 
check if there is a difference in the total gas accreted or cold gas formed or find the CC 

and NCC dichotomy. 


