Modelling HI and H₂ Gas in L-Galaxies SAMs

Fu Jian (富坚)

Shanghai Astronomical Observatory, CAS

fujian@shao.ac.cn

2017-07-11, MPA

Munich, Germany

Galaxies in the Simulated Universe

Semi-analytic models L-Galaxies, GALFORM(Lagos, Kim

Describe the physical processes of baryonic matter based on dark matter simulation ouputs

Hydrodynamic Simulations EAGLE, Illustris, Horizon-

Simulation combining both dark matter and baryonic matter

SAMs vs Hydrodynamic

In one day

Several months

SAMs can study the physical processes more easily.

Self-consistent model of atomic & molecular gas partition in ISM

- Models only include one gas phase in ISM (L-GALAXIES, GALFROM etc.)
- Post-processing methods (Obreschkow et al. 2009; Power et al. 2010; Lagos et al. 2015 on EAGLE simulation) not self-consistent
- Models with the calculation of H₂-HI-HII transition (Fu et al. on ; Lagos et al. on GALFORM; Popping et al. ; Steven et al. on Dark SAGE ...)

self-consistency on the physical processes of gas/SFR in ISM

• Trace the radial surface density profiles throughout the formation history (Fu et al.; Steven et al.)

The radial resolved disk in SAMs

Similar to the methods in GCE models to trace the radial

Concentric

- Geometric s smaller in i
- A lot more n in largest tr

द्र disk formation

sks ion~100GB RAM

RAM is cheaper

Gas profiles and SFR

- Atomic-molecular gas transition
 - Prescription 1: Krumholz et al. 2009; Mckee & Krumholz 2010

$$f_{\rm H_2}\left(\Sigma_{\rm gas}, [Z/{\rm H}]_{\rm gas}\right)$$

- Prescription 2: Pressure related H₂ fraction recipe (B&R 2006)

$$R_{\rm mol} = M_{\rm H_2} / M_{\rm HI} = \left[P / P_0 \right]^{\alpha} \qquad P(r) = \frac{\pi}{2} G \Sigma_{\rm gas}(r) \left[\Sigma_{\rm gas}(r) + f_{\sigma}(r) \Sigma_{*}(r) \right]$$

- Prescription 3: Molecular-atomic-ionized gas (Gnedin& Kravtsov 2011) $f_{\rm HII}, f_{\rm H_2}, \Sigma_{\rm gas}, U_{\rm MW}, D_{\rm MW}$

- H₂ proportional star formation $\lim_{\Sigma_{H_2}} \Sigma_{SFR} = \alpha \Sigma_{H_2}$
- Exponential infalling gas 10⁰ r [kpc] r [kpc]

Radial gas inflow and gas surface density profiles

- Galaxy chemical evolution models with radial gas inflow: Lacey & Fall (1985), Portinari & Chiosi (2000), Spitoni & Matteucci (2011), Schönrich & Binney (2009) etc.
- Physical Mechanisms:
 - The mixing of cooling gas with existant disk gas causes the change of specific angular momentum of gas disk
 - Suppress the increase of specific angular momentum of gas disk caused by the difference of the gas consumption at different radius

• Assumption:
$$dL_{gas} / dt = CL_{gas}$$

$$L_{gas} = m_{gas} r_{gas} v_{cir} \rightarrow V_{inflow} = \alpha_v r$$

 $\alpha_v = 0.70 \text{ km s}^{-1} \text{ kpc}^{-1}$ a constant value in the models

Millennium and Millennium II Simulation

- Millennium Simulation: Springel et al. 2005
- Millennium II Simulation: Boylan-Kolchin et al. 2009
- Rescaling to most update cosmological parameters (Angulo & White 2010)
- The mass resolution of MS-II is 125 larger than MS: use to study dwarf galaxies and small galaxies at high z

	Millennium I (MS)	Millennium II (MS-II)
Particle number	2160 ³	
Particle Mass	8.6×10 ⁸ M _☉ h ⁻¹	6.8×10 ⁶ M _☉ h ^{₋1}
Box size	500 <i>h</i> -1 Мрс	100 <i>h</i> -1 Мрс
Output snapshots	64 snapshots Between z=0 and 127	68 snapshots Between z=0 and 127
Minimum halo mass	1.7×10 ¹⁰ M⊙h ⁻¹	$1.4 \times 10^8 M_{\odot} h^{-1}$

Aquarius Simulation (Springel et al. 2009)

- Six halo merger trees of MW sized galaxies with different resolutions
- The formation of MW and its satellites

Plan: Cold Gas components in local universe

• ELUCID simulation (Wang, Mo, Yang et al. 2014)

Mass functions at z=0

 $\log_{10}[M_{\rm HI}/M_{\odot}h^{-2}]$

The HI gas in MW satellites

Collaborators: Lincheng Li, Jie Wang, Bo Qin

- Models based on Aquarius haloes Neutral gas ionized by UV
- 4 MW satellites with HI detected background (Gnedin 2012) within 280 kpc (Grcevich & Putman $\Sigma_{HI+H_2} < 0.4 M_{?} pc^{-2} \longrightarrow HII$ 2009)

- Warm dark matter?
- Change baryonic processes in dwarf satellites?

The upcoming extragalactic HI and H_2 (CO) observations

- ASKAP (WALLABY: HI All-Sky Survey)
- MeerKAT (MHONGOOSE: nearby HI observations)
- SKA (all sky HI survey after 2020)
- FAST (Large-Scale Surveys for HI Emission from Galaxies
- ALMA (CO survey in galaxies at high redshift)

scale relations at z=0

Fu et al. 2010

mass functions at z=0

Fu et al. 2013

o

A ROLLAND BORDER BURDER BORDER

Li et al. 2009

9

 $\log_{10}[M_*/M_{\odot}h^{-2}]$

Baldry et al. 2008

10

11

 $\log_{10}[\Phi_*/Mpc^3h^{-3}]$

The redshift evolution of H2 and HI

The mock catalogue based on model results

The mock catalogue based on model results

2005

The mock galaxy catalogue for HI survey Mock method: Kitzbichler & White 2006; Blaizot et al. 2005

RA, Dec, $z, M_*, M_{\rm HI}, M_{\rm H_2}, F_{\rm HI}, W_{\rm HI}^{50}, L$

$$\frac{F_{\rm HI}}{\rm Jy \ km/s} = \frac{1}{2.36 \times 10^5 D^2} \frac{M_{\rm HI}}{M_{\rm P}}$$

- HI gas in low redshift (z<0.3) galaxies
- HI gas in dwarf satellite galaxies in local group
- HI gas mock for high redshift HI survey

$$\frac{L_{\rm CO}}{\rm Jy \ km \ s^{-1} \ Mpc^2} = 3.2 \times 10^{-3} \frac{M_{\rm H_2}}{M_{\rm P}} \left(\frac{X}{10^{20} \ \rm cm^{-2} \ \rm K^{-1} \rm km \ s^{-1}}\right)^{-1}$$

 $CO(1 \rightarrow 0)$ luminosity

•

Predictions of Galaxy cluster numbers for FAST HI gas survey

Ai et al 2017

Size-mass relation HI gas in galaxies

HI size-mass relation in the model results

HI size-mass relation

- The size-mass relation of HI gas in galaxies are mainly caused by atomic-molecular gas conversion
- The small scatter of size-mass relation is the result of similar HI gas radial profile
- Universal outer disk HI exponential profiles are from recent similar gas accretion
- HI size-mass relation are nearly universal for different galaxies at different redshifts 0.5

Conclusions

- Advantages for study HI and H₂ based on SAMs
- Our model can give fit the results of nearby galaxies and also some results for high redshift
- \rightarrow mock catalogue for 21 cm survey for radio telescopes
- The missing satellite problem exists in HI gas components
- HI size-mass relation: the atomic-molecular transition

Thank you!